Long?time asymptotic behavior of the fifth?order modified KdV equation in low regularity spaces

نویسندگان

چکیده

Based on the nonlinear steepest descent method of Deift and Zhou for oscillatory Riemann--Hilbert problems Dbar approach, long-time asymptotic behavior solutions to fifth-order modified Korteweg-de Vries equation line is studied in case initial conditions that belong some weighted Sobolev spaces. Using techniques Fourier analysis idea $I$-method, we give its global well-posedness lower regularity spaces, then obtain these spaces with weights.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low regularity solution of a 5th-order KdV equation

The Kawahara and modified Kawahara equations are fifth-order KdV type equations and have been derived to model many physical phenomena such as gravitycapillary waves and magneto-sound propagation in plasmas. This paper establishes the local well-posedness of the initial-value problem for Kawahara equation in H(R) with s > − 4 and the local well-posedness for the modified Kawahara equation in H(...

متن کامل

The Cauchy problem for the modified Kawahara equation in Sobolev spaces with low regularity

This paper is concerned with the Cauchy problem of the modified Kawahara equation. By using the Fourier restriction norm method introduced by Bourgain, and using the I-method as well as the L 2 conservation law, we prove that the modified Kawahara equation is globally well-posed for the initial data in the Sobolev space H s (R) with s > − 3 22 .

متن کامل

Asymptotic Behavior of Boussinesq System of Kdv–kdv Type

This work deals with the local rapid exponential stabilization for a Boussinesq system of KdVKdV type introduced by J. Bona, M. Chen and J.-C. Saut. This is a model for the motion of small amplitude long waves on the surface of an ideal fluid. Here, we will consider the Boussinesq system of KdV-KdV type posed on a finite domain, with homogeneous Dirichlet–Neumann boundary controls acting at the...

متن کامل

The low regularity global solutions for the critical generalized KdV equation

We prove that the Cauchy problem of the mass-critical generalized KdV equation is globally well-posed in Sobolev spaces Hs(R) for s > 6/13; we require that the mass is strictly less than that of the ground state in the focusing case. The main approach is the “I-method” together with some multilinear correction analysis. The result improves the previous works of Fonseca, Linares, Ponce (2003) an...

متن کامل

Asymptotic Stability for Kdv Solitons in Weighted Spaces via Iteration

In this paper, we reconsider the well-known result of PegoWeinstein [17] that soliton solutions to the Korteweg-deVries equation are asymptotically stable in exponentially weighted spaces. In this work, we recreate this result in the setting of modern well-posedness function spaces. We obtain asymptotic stability in the exponentially weighted space via an iteration argument. Our purpose here is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studies in Applied Mathematics

سال: 2021

ISSN: ['0022-2526', '1467-9590']

DOI: https://doi.org/10.1111/sapm.12379